SOME PHONOLOGY PROBLEMS FROM FUNCTIONAL SPEECH DISORDERS

Daniel A. Dinnsen and Edith M. Maxwell
Indiana University

Introduction

One area where linguistics has applications in other disciplines is in the analysis of speech disorders. Speech pathology researchers and clinicians have traditionally appealed to various aspects of linguistics for the purpose of description and diagnosis of children's misarticulations. A number of linguistically oriented tests have been developed within speech pathology to identify (1) the sounds that occur in the child's phonetic inventory (Goldman-Fristoe Test of Articulation, 1969), (2) the role of context on articulation (McDonald Deep Test, 1964), and most recently, (3) the phonological processes presumed to be operating in the child's misarticulated speech (Weiner's Phonological Process Analysis, 1979; Hodson's Assessment of Phonological Processes, 1980). To the extent that these tests appeal to fundamental aspects of linguistics, it should be clear that linguists can contribute to the understanding of these and other concepts. The Speech and Hearing Sciences Department at Indiana University recognizes the benefits of training in linguistics by requiring their students to take at least one introductory-level course on linguistic analysis. Analysis courses here are typically taught through a data-based, problem-solving approach. These data-based problems are drawn from foreign languages, which may not always seem especially relevant to the concerns of speech pathologists. While we believe that it is important for all students to be exposed to the workings of language generally, the issue of relevance to speech pathology can be addressed easily with the introduction of a few data-based problems drawn from children's speech disorders. These problems not only address directly the interests of speech pathology students but also serve the function of acquainting other students with the (mis)workings of language.

The purpose of this paper is to present four data-based problems drawn from children's speech disorders. The nature of these disorders is FUNCTIONAL as opposed to organic. Functional misarticulations have no apparent organic basis such as brain damage, hearing impairment, cleft palate, etc. The problems to be presented below illustrate a number of fundamental linguistic concepts and points, some of which bear on some controversial issues from the speech pathology literature. The points dealt with here include claims about possible phonetic inventories, the postulation of underlying representations, and phonological rules. One of the most controversial issues has been the question of whether the underlying representations of functionally misarticulated speech are the same as those of the surrounding adult speech community.
There have been at least two opposing positions on this question. Some have simply assumed that the child's underlying representations are the same as the adult's (Ingram, 1974, 1976a, b; Compton, 1970, 1975; Weiner, 1979). Others have attempted to argue that the determination of underlying representations is an empirical issue (Dinnsen, Elbert and Weismer, 1979, 1980; Dinnsen, 1980; Weismer, Dinnsen and Elbert, to appear; Maxwell, 1979). A consequence of this latter approach is that some children can be shown to have the same underlying representations as adults while others cannot. The different characterizations resulting from this latter approach may provide important diagnostic differentials among children and may in turn suggest appropriate bases for the remediation of the individual child's speech. For a more thorough review of the controversy surrounding the issue of underlying representations see Maxwell (1981).

Ingram (1976a), *Phonological Disability in Children*, is a current textbook which reviews the issues involved in the analysis of both functional and organic speech disorders in children. It could serve as an additional source of examples and background when the problems in this article are being discussed.
Problems

Problem 1.

Child: C.P. Age: 3 years, 6 months

1. From Part I below, identify the full set of consonants that occur in this child's phonetic inventory.

2. What consonant contrasts are evident in this sample?

3. Specify the distributional constraints for vowel-consonant sequences.

4. From Part II below, identify alternations involving consonants as well as non-alternating forms. What do these forms suggest about this child's underlying representations?

5. What rules or constraints would account for these facts? Determine the obligatory/optional character of these rules.

DATA

Part I

1. [ɔ bəbɪ dʊ] what baby doing?
2. [bəbɪ] baby
3. [ci tə jo] say table
4. [pr] pig
5. [pri] piggie
6. [xi p] [p] sheep
7. [waɪ] ride
8. [waɪnɪ] riding
9. [tæ?] Pat
10. [pɑ] Patty
11. [bʌ] Bud
12. [bʌɪ] Buddy
13. [dʌ?] duck
14. [dʌʔi] duckie
15. [hɛi a jot da wan]
 hey I got one

16. [tasi]
 coffee

17. [dæ maj taʃ]
 that's my tie

18. [baʃb]
 Bob

19. [baʃbi]
 Bobby

20. [wa mama do]
 where'd mama go?

21. [dæips]
 scrape

22. [da]
 dog

23. [dai]
 doggie

24. [boʃ]
 bird

25. [tæɡboʃ] [kæɡboʃ]
 cowboy

26. [kə] [ˈkɔ]
 color

27. [dəʃ]
 grape

28. [fwaʃ]
 froggie

29. [ʃəʃ] [θəʃ] [tʃə]
 say

30. [tʃi tʃa]
 see sock

31. [muʒ]
 move

32. [muʔʒi] [muʔʒi]
 moving

33. [daʃ]
 dive

34. [daʃi]
 diving

35. [pri roz]
 pretty rose

36. [ɡuf] [duʃ]
 goose

37. [vai tɨɾ]
 vacuum cleaners

38. [wiŋ]
 ring

39. [ɡəʃo]
 yellow

40. [hoɔsi]
 horsey

41. [ʃeʃi waɾə]
 fell in water
Part II

1. [xip] [ʃi]
 sheep

2. [deɡi]
 grape

3. [bu]
 bulb

4. [baib]
 Bob

5. [baibi]
 Bobby

6. [pi]
 pig

7. [pri]
 piggie

8. [ba]
 Bud

9. [bai]
 Buddy

10. [daʔ]
 duck

11. [daʔi]
 duckie
Solution and Discussion of C.P.

1. Phonetic inventory of consonants

\[
\begin{array}{cccc}
\text{pb} & \text{td} & \text{kg} & ? \\
\text{fv} & \emptyset & \text{sz} & \text{f}3 \\
\text{tj} & \text{dg} \\
x & m & n & \emptyset \\
w & j & h
\end{array}
\]

The phonetic inventory is reasonably complete. However, it should be noted that there is no [\emptyset] or [1].

2. There is evidence of a voice contrast, stop-fricative-affricate contrast, and so on. The place contrast within fricatives is not totally comparable to adult contrasts.

3. Vowel-consonant sequences: The only obstruent stops that can appear after vowels are labials. No dental/alveolar or velar stop obstruents appear after vowels word-internally or word-finally. Fricatives and affricates can appear after vowels.

4. The consonantal alternations in Part II show labial stops word-finally alternating with null optionally. That is, labials may or may not appear word-finally in a given morpheme, e.g. [\text{xip}] - [\text{ji}] 'sheep' and [\text{baib}] - [\text{babi}] 'Bob' - 'Bobby'. There are other forms that show no alternation--evidencing no post-vocalic obstruent in any realization of the morpheme, e.g. [\text{pi}] - [\text{pii}] 'pig' - 'piggie' and [\text{ba}] - [\text{bai}] 'Bud' - 'Buddy'. These forms suggest that some of this child's underlying representations are the same as those of the adult but others are not. That is, the alternating forms involving post-vocalic labials are the same as the adult's, e.g. /\text{kip}/ 'sheep' and /\text{baib}/ 'Bob'. The non-alternating forms are represented differently in underlying representation, e.g. /\text{pi}/ 'pig' and /\text{ba}/ 'Bud'.

5. These facts are accounted for in part by a rule which optionally deletes obstruents in word-final position--although there is only evidence of labials undergoing deletion. There seems to be no motivation for restricting the rule to labials, however, since the other obstruents noted above are more generally precluded from occurring after vowels by a phonotactic constraint. Thus, the only obstruents that could come to appear in word-final position are labials. Labials are, therefore, the only obstruents subject to deletion.
Problem 2.

Child: P.P. Age: 4 years

1. From Part I below, identify the full set of consonants that occur in this child's inventory. How does this child's inventory differ from that of C.P.?

2. What consonant contrasts are evident in this sample?

3. Specify the distributional constraints for vowel-consonant sequences.

4. From Part II, identify alternations involving consonants as well as non-alternating forms. What do these forms suggest about this child's underlying representations?

5. What rules or constraints would account for these facts? Determine the obligatory/optional character of these rules.

DATA

Part I

1. [paʔ dʒiʔ] park jeep

2. [hɛʔ dʒiʔ] hate jeep

3. [mɛʔbiʔ] maybe

4. [næʃ aɪ no:] now I know

5. [mi babo pa:] my bubble popped

6. [hɪ i waʔ ɗa:] here is one dog

7. [hɪ i waʔ ɗai:] here is one doggie

8. [aɭ waɭ] I ride

9. [waɪn] riding

10. [waɭ] write

11. [waɪn] writing

12. [hɪm neʔim bɑ:] him name Bud

13. [kəmɪn ɭɭ] coming up

14. [a kə m weʔ ɭp ka] I call them wreck up cars
15. [weʔin ka] wrecking cars
16. [paʔin] parking
17. [gi i fɨŋ æŋ? hɨɾ] get these things out of here
18. [kap] [kæ] cap
19. [paʔ] park
20. [ʌp] [ʌ] up
21. [kæbi] cowboy
22. [ba] [bab] Bob
23. [bab] Bobby
24. [væ] van
25. [tiʔiʔ] tickets
26. [go] go
27. [ko plei̯] coke place
28. [trei̯] trade
29. [faʔ] fast
30. [kiɾo pɨpo] kill people
31. [aɾ t̥iɾo] I'm going to tell her
32. [ai naʔ ni tu] I not need to
33. [u naʔ o kɛɾ kɐm mɐi] you not O.K. come my birthday?
Part II

1. [dʒip] [dʒi] jeep
2. [bab] [ba] Bob
3. [babɪ] Bobbie
4. [ʌp] [ʌ] up
5. [kæp] [kæ] cap
6. [pɛ] pep
7. [pæpi] peppie
8. [babə] bubble
9. [meɪbi] maybe
10. [da] dog
11. [daɪ] doggie
12. [weɪ] write, ride
13. [weɪn] writing, riding
14. [paʔ] park
15. [paʔ in] parking
Solution and Discussion of P.P.

1. Phonetic inventory of consonants

 pb td kg ?
 fv
 dʒ
 r l
 m n η
 w h

 This phonetic inventory is considerably less elaborate than that of C.P. in Problem 1. In this instance, all fricatives are labial.

2. Obstruents contrast in voice and place. The stop-fricative contrast is limited to labials.

3. Vowel-consonant sequences: The only obstruents that can occur after vowels word-medially or word-finally are labials. There are no dental/alveolar or velar obstruents after vowels. Nasal consonants can occur after vowels.

4. The forms in Part II reveal an alternation between labials and null word-finally. This alternation appears to be optional since a given morpheme may or may not appear with a word-final labial. Other forms show no alternation, e.g. [da] ~ [dai] 'dog' ~ 'doggie' and [wai] ~ [wain] 'write' ~ 'writing'. The forms evidencing an alternation motivate postulating underlying representations that are the same as those of the adult, e.g. /kæp/ 'cap', /pæp/ 'pep', /bab/ 'Bob'. Those forms evidencing no alternation fail to motivate underlying representations that are the same as the adult's, e.g. /da/ 'dog', /wai/ 'write'.

5. The rule accounting for these facts is the same as that for C.P. in Problem 1. That is, an optional rule of word-final obstruent deletion is needed. There is also a general phonotactic constraint which excludes any but labial obstruents after vowels.
Problem 3.
Child: M.B. (early stage) Age: 3 years, 11 months

1. Identify the full set of consonants that occur in this child's phonetic inventory. What generalizations can be made about the inventory?

2. Is voice contrastive in obstruents?

3. Specify the distributional constraints for vowel-consonant sequences.

4. How do the forms in Part II below compare with the forms from Part I in the two previous problems? What do these forms suggest about this child's underlying representations?

5. What rules or constraints would account for these facts? Determine the obligatory/optional character of the rule.

DATA

Part I

1. [wi da ø jø b ð du] we got a yellow bed too
2. [hi ma:j bi mami døn] he might be mommy then
3. [dai du bø] driving too fast
4. [æ? i ðø] at his desk
5. [du bøwi] tooth fairy
6. [hoin ø bø̃æiøn] holding a valentine
7. [ma:j diŋ i dan] my thing is gone
8. [hi dø?in døi bøi ø waio] he's getting chased by a lion
9. [bu? an i øø ju] put on his other shoe
10. [døgn] clown
11. [di] dish
12. [dø] cab
13. [du] zoo
14. [ba:j] fly
15. [ðe] Fred
16. [bu] blue
17. [ðe] bread
18. [ðeɪ] plate
19. [ðeɪn] spreading
20. [ðæ] just
21. [di] ski
22. [ði]n] queen
23. [ði]n] twin
24. [wu] roof
25. [æ] bad
26. [ðaʔ owə] cross over
27. [ðæ] glass
28. [ðe] sled
29. [oɪn ə bæ θ] holding a flag up
30. [ðo ə bæɪ] throw the pie
31. [mæwin ə wo] smelling a rose
32. [ðe nɛɪ ən dæʔ] there's a snake on there
33. [wiʔən] sleeping
34. [wi] sweeping
35. [a] saw
36. [ðæ] glove

Part II

1. [ðæ] dad
dad
doggie
talk
eat
talking

dog

dog
Solution and Discussion of M.B. (early stage)

1. Phonetic inventory of consonants

\[
\begin{array}{llll}
\text{b} & \text{d} & ? \\
\text{m} & \text{n} & \text{q} \\
\text{w} & \text{j} & \text{h}
\end{array}
\]

Generalizations: All obstruents are voiced, non-continuant and anterior. All sonorant consonants are nasal, i.e., there are no liquid consonants.

2. Voice in obstruents appears to be non-contrastive. However, this claim is based on the above inventory, which involves transcriptions of the child's speech without the benefit of instrumental validation. Maxwell and Weismer (1980) establishes that M.B. does in fact have a voice onset time (VOT) distinction which corresponds to a voice contrast in obstruents, although the VOT values fall within the adult English perceptual range for only voiced stops; this is why they are heard as voiced by adult listeners and transcribers.

3. Distributional constraints on vowel-consonant sequences: The only consonants that can follow vowels are nasals. There are no vowel-obstruent consonant sequences anywhere within a word.

4. The forms in Part I of this problem show no consonantal alternations whereas some morphemes in the other problems did alternate. The absence of alternations in this data and the general absence of post-vocalic obstruents suggests that this child's underlying representations may be quite different from those of the adult. For example, some of the underlying representations would be the following: /dað/ 'dad', /da/ 'dog', /i/ 'eat', /daʔ/ 'talk'.

5. The absence of obstruents word-finally and after vowels word-internally would be accounted for by one general phonotactic constraint, which excludes all obstruents after vowels. This constraint would govern the construction of morphemes as well. The constraint in this instance is different from the previous rules in that this is obligatory, i.e., there are no surface violations of the constraint.
Problem 4.

Child: M.B. (4 months later)
Age: 4 years, 3 months

1. How has this child's phonetic inventory changed?

2. Identify the alternations evident in Part II. What are the distributional facts concerning voiceless stops? What do these forms suggest about some of this child's underlying representations? What rule would account for these facts?

3. Identify the alternations evident in Part III. What do these forms suggest about this child's underlying representations? What rule would account for these facts? Determine the obligatory/optional character of the rule.

4. Identify the alternations evident in Part IV. What rule would account for these facts? Determine the obligatory/optional character of the rule.

DATA

Part I

1. [beɪ bəl]
 baby bed

2. [də no beɪbi]
 there's no baby

3. [haʔ taʔ riʔ?]
 hot chocolate

4. [fa̯we gai̯n]
 flower garden

5. [na̯f] [naif]
 knife

6. [waf]
 roof

7. [a̯ ̄ me̯ zi:].
 I make everything

8. [deʃ wo həʔi]
 they were happy

9. [deʃ taʔ no baɪ wu luki]
 they thought nobody would look

10. [deʃ ka ˈθəm fə]
 they caught some fish

11. [hi ̃ də ˈmiθiŋ ju ̃
 he can do anything you to ɪ ̃ tu]
 told him to.

12. [a̯ ̄ ə ̃ həp hɪm]
 I have to help him

13. [dampwɔp]
 jumprope
14. [ai ŋ dəm o:wi ə da]
I can jump over it, the sky
ən wə ə ma fit]
and land on my feet

15. [ai he ə ba]
I have a bike

16. [aɨm na ə inə]
I'm not old enough

17. [am fo]
I'm four

18. [ma] tʃio]
my Cheerios

19. [ma] dəi dəz]
my daddy does

20. [təi] [tʃəi]
cherry

21. [ai ɡi əp]
I give up

22. [ha ə dag]
hot dog

23. [ba a aik kon n]
but I like corn and
hæmbuɡə n piəo
hamburgers and pickles,
fiwə piəo]
sweet pickles

Part II
1. [dək]
duck

2. [dəkəi]
duckie

3. [pəp]
pep

Part III
1. [dəg]
dog

2. [dai] [dagi]
doggie

3. [bəi] [bəibi]
baby
Part IV

1. [hæ] [haɪd]
 had

2. [dæɡ] [daɡ]
 dog

3. [dæɡi] [dai]
 doggie

4. [dæm] [dæmp]
 jump

5. [jeɪ] [jeɪk]
 shake

6. [bæˈtʌb] [baʊtəb]
 bathtub

7. [mɛk] [mɛʊk]
 milk

8. [naɪf] [naɪf]
 knife

9. [hɪm]
 him

10. [θʌm]
 thumb

11. [kɔrn]
 corn

12. [gɑrn]
 garden
Solution and Discussion of M.B. (4 months later)

1. Phonetic inventory of consonants

 \[
 \begin{array}{cccc}
 pb & td & kg & ? \\
 fv & s & sz & j \\
 m & n & q & \\
 w & j & h & \\
 \end{array}
 \]

 The phonetic inventory has obviously been elaborated substantially. Voiceless obstruents, velars, fricatives, a voiceless affricate and /l/ have been added.

2. The consonantal alternations in Part II show voiceless stops word-finally alternating with glottal stop between vowels. It can also be observed that voiceless stops such as p t k cannot occur between vowels. These facts suggest that the underlying representations for at least those forms evidencing this alternation are the same as those of the adult. For example, the underlying representations for 'duck' and 'pep' are /dæk/ and /pɛp/, respectively. The rule accounting for these alternations will change voiceless stops into glottal stop intervocalically.

3. The consonantal alternations in Part III show voiced obstruents stops word-finally alternating with null intervocalically. These forms also suggest that the underlying representation for alternating forms are the same as those of the adult, e.g. /dæg/ 'dog', /bɛjbi/ 'baby'. The rule accounting for this alternation would delete voiced obstruent stops between vowels. This rule is evidently optional since there are some forms which may or may not appear with an intervocalic voiced stop.

4. The alternations in Part IV show word-final obstruents alternating with null optionally and word-medial voiced obstruents alternating with null word-finally. These facts motivate a rule optionally deleting word-final consonants.
The data in this paper are drawn from a joint research project with Mary Elbert and Gary Weismer funded in part by a grant from the United States Public Health Service, #PHS S07 RR 7031, and by a grant to the first author from the Office of Research and Graduate Development, Indiana University, 1980. We are also grateful to Fred Eckman and Barbara Rockman for their comments and assistance in various stages of our research.

Ingram (1974, 1976a, pp. 48-50 and following, 1976b) has suggested in some of his discussions that children may in some cases have their own unique underlying representations; however, Ingram never pursues this suggestion nor supports it by empirical evidence.

This data from M.B. was elicited four months after the first elicitation, during which time the child was undergoing remediation in the Speech and Hearing Clinic. This remediation program focused on training word-final stop consonants.
REFERENCES

Dinnsen, D. A. 1980. Linguistic approaches to sampling and analysis of functionally misarticulated speech. Presented at the American Speech and Hearing Association meeting, Detroit.

